В чем состоит предназначение миелиновой оболочки сохраняет. Демиелинизация - разрушение миелиновой оболочки нервных волокон в результате воспаления, ишемии, травмы мозга. Строение нервного волокна. Миелиновая оболочка

Демиелинизация Demyelination заболевание, вызванное избирательным повреждением миелиновой оболочки, проходящей вокруг нервных волокон

Демиелинизация - патологический процесс, при котором миелинизированные нервные волокна теряют свой изолирующий миелиновый слой. Миелин, фагоцитированный микроглией и макрофагами, а впоследствии - астроцитами, замещается фиброзной тканью (бляшками). Демиелинизация нарушает проведение импульса по проводящим путям белого вещества головного и спинного мозга; периферические нервы не поражаются.

ДЕМИЕЛИНИЗАЦИЯ - разрушение миелиновой оболочки нервных волокон в результате воспаления, ишемии, травмы, токсико-метаболических или иных расстройств.

Демиелинизация (Demyelination) - заболевание, вызванное избирательным повреждением миелиновой оболочки, проходящей вокруг нервных волокон центральной или периферической нервной системы. Это в свою очередь приводит к нарушению функций миелиновых нервных волокон. Демиелинизация может быть первичной (например, при рассеянном склерозе), или развивается после травмы черепа.

ДЕМИЕЛИНИЗИРУЮЩИЕ ЗАБОЛЕВАНИЯ

Заболевания, одним из основных проявлений которых является разрушение миелина, - одна из наиболее актуальных проблем клинической медицины, преимущественно неврологии. В последние годы наблюдается отчетливое увеличение числа случаев заболеваний, сопровождающихся повреждением миелина.

Миелин - особый вид клеточной мембраны, окружающей отростки нервных клеток, в основном аксоны, в центральной (ЦНС) и периферической нервной системе (ПНС).

Основные функции миелина:
питание аксона
изоляция и ускорение проведения нервного импульса
опорная
барьерная функции.

По химическому составу миелин - это липопротеидная мембрана, состоящая из биомолекулярного липидного слоя, расположенного между мономолекулярными слоями белков, спирально закрученная вокруг интернодального сегмента нервного волокна.

Липиды миелина представлены фосфолипидами, гликолипидами и стероидами. Все эти липиды построены по единому плану и обязательно имеют гидрофобный компонент ("хвост") и гидрофильную группу ("головку").

Белки составляют до 20% сухой массы миелина. Они бывают двух видов: белки, расположенные на поверхности, и белки, погруженные в липидные слои или пронизывающие мембрану насквозь. Всего описано более 29 белков миелина. Основной белок миелина (ОБМ), протеолипидный белок (ПЛП), миелин-ассоциированный гликопротин (МАГ) составляют до 80% массы белка. Они выполняют структурную, стабилизирующую, транспортную функции, обладают выраженными иммуногенными и энцефалитогенными свойствами. Среди мелких белков миелина особое внимание заслуживает миелин-олигодендроцитарный гликопротеин (МОГ) и ферменты миелина, имеющие большое значение в поддержании структурно-функциональных взаимоотношений в миелине.

Миелины ЦНС и ПНС отличаются по своему химическому составу
в ПНС миелин синтезируется шванновскими клетками, причем несколько клеток синтезируют миелин для одного аксона. Одна шванновская клетка образует миелин только для одного сегмента между участками без миелина (перехватами Ранвье). Миелин ПНС заметно толще, чем в ЦНС. Такой миелин имеют все периферические и черепные нервы, только короткие проксимальные сегменты черепных нервов и спинно-мозговых корешков содержат миелин ЦНС. Зрительный и обонятельный нервы содержат преимущественно центральный миелин
в ЦНС миелин синтезируется олигодендроцитами, причем одна клетка принимает участие в миелинизации нескольких волокон.

Разрушение миелина является универсальным механизмом реакции нервной ткани на повреждение.

Болезни миелина подразделяются на две основные группы
миелинопатии - связаны с биохимическим дефектом строения миелина, как правило, генетически обусловленным

Миелинокластии - в основе миелинокластических (или демиелинизирующих) заболеваний лежит разрушение нормально синтезированного миелина под влиянием различных воздействий, как внешних, так и внутренних.

Подразделение на эти две группы весьма условно, так как первые клинические проявления миелинопатий могут быть связаны с воздействием различных внешних факторов, а миелинокластии вероятнее всего развиваются у предрасположенных лиц.

Наиболее распространенное заболевание из всей группы болезней миелина - рассеянный склероз. Именно с этим заболеванием приходится наиболее часто проводить дифференциальную диагностику.

Наследственные миелинопатии

Клинические проявления большинства этих заболеваний чаще отмечаются уже в детском возрасте. В то же время имеется ряд заболеваний, которые могут начинаться в более позднем возрасте.

Адренолейкодистрофии (АЛД) связаны с недостаточностью функции коры надпочечников и характеризуются активной диффузной демиелинизацией различных отделов как ЦНС, так и ПНС. Основной генетический дефект при АЛД связан с локусом на Х-хромосоме - Xq28, генетический продукт которого (белок ALD-P) является пероксисомальным мембранным белком. Тип наследования в типичных случаях - рецессивный, зависимый от пола. В настоящее время описано более 20 мутаций в разных локусах, связанных с разными клиническими вариантами АЛД.

Основной метаболический дефект при этом заболевании - увеличение содержания в тканях насыщенных жирных кислот с длинной цепью (особенно С-26) , что приводит к грубым нарушениям структуры и функций миелина. Наряду с дегенеративным процессом в патогенезе болезни существенное значение имеет хроническое воспаление в ткани мозга, связанное с повышенной продукцией фактора некроза опухолей альфа (ФНО-a). Фенотип АЛД определяется активностью этого воспалительного процесса и вероятнее всего обусловлен как различным набором мутаций на Х-хромосоме, так и аутосомной модификацией влияния дефектного генетического продукта, т.е. сочетанием основного генетического дефекта в половой Х-хромосоме со своеобразным набором генов на других хромосомах.

Концевые разветвления аксонов у разных нейронов имеют разнообразную форму в соответствии с характером их контактов с телами и дендритными разветвлениями других нейронов. Отрезки аксона, проходящие в сером веществе , дают от себя ответвления – боковые и возвратные коллатерали, также для установления контактов с расположенными поблизости нейронами. Существование нервных клеток, лишённых аксонов, представляется спорным. К таким безаксонным элементам относили, например, амакриновые клетки сетчатки глаза. В настоящее время имеются основания рассматривать отростки этих клеток как разветвления не дендритов, а именно аксона.

Исключительно редкими нейронами горизонтального молекулярного слоя коры мозга являются клетки Кахаля-Ретциуса , особенность которых состоит в том, что , направляющиеся к периферии, преобразовались в аксоны.

Ядро нейрона, цитоплазма, вещество Ниссля, нейрофибриллы, митохондрии и другие включения

Ядро отличается сравнительно большими размерами, круглой или овальной формой. Объемное соотношение между ядром и цитоплазмой клетки значительно варьирует в различных образованиях . Мелкие клетки обычно имеют относительно более крупное ядро. Ядро нервной клетки содержит ядерный сок (кариоплазму), в котором различными гистологическими и гистохимическими методами выявляются гранулы, содержащие рибонуклеопротеид (хроматин). Оболочка ядра сравнительна плотна и под электронным микроскопом выявляется в виде двойной мембраны с нерегулярно расположенными порами.

Нервная система выполняет важнейшие функции в организме. Она отвечает за все действия и мысли человека, формирует его личность. Но вся эта сложная работы была бы невозможна без одной составляющей — миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Анатомия миелина в строении нерва

Главная клетка нервной системы – нейрон. Тело нейрона называется сома. Внутри нее находится ядро. Тело нейрона окружено короткими отростками, которые называются дендриты. Они отвечают за связь с другими нейронами. От сомы отходит один длинный отросток – аксон. Он несет импульс от нейрона к другим клеткам. Чаще всего на конце он соединяется с дендритами других нервных клеток.

Всю поверхность аксона покрывает миелиновая оболочка, которая представляет собой отросток клетки Шванна, лишенный цитоплазмы. По сути, это несколько слоев клеточной мембраны, обернутые вокруг аксона.

Шванновские клетки, обволакивающие аксон, разделяются перехватами Ранвье, в которых отсутствует миелин.

Функции

Основными функциями миелиновой оболочки являются:

  • изоляция аксона;
  • ускорение проведения импульса;
  • экономия энергии за счет сохранения ионных потоков;
  • опора нервного волокна;
  • питание аксона.

Как работают импульсы

Нервные клетки изолированы благодаря своей оболочке, но все же взаимосвязаны между собой. Участки, в которых клетки соприкасаются, называются синапсы. Это место, где встречаются аксон одной клетки и сома или дендрит другой.

Электрический импульс может передаваться внутри одной клетки или от нейрона к нейрону. Это сложный электрохимический процесс, который основан на перемещении ионов через оболочку нервной клетки.

В спокойном состоянии внутрь нейрона попадают только ионы калия, а ионы натрия остаются снаружи. В момент возбуждения они начинаются меняться местами. Аксон положительно заряжается изнутри. Затем натрий перестает поступать через мембрану, а отток калия не прекращается.

Изменение напряжения из-за движения ионов калия и натрия называется «потенциал действия». Он распространяется медленно, но миелиновая оболочка, обволакивающая аксон, ускоряет это процесс, препятствуя оттоку и притоку ионов калия и натрия из тела аксона.

Проходя через перехват Ранвье, импульс перескакивает с одного участка аксона на другой, что и позволяет ему двигаться быстрее.

После того, как потенциал действия пересекает разрыв в миелине, импульс останавливается, и возвращается состояние покоя.

Такой способ передачи энергии характерен для ЦНС. Что касается вегетативной нервной системы, в ней часто встречаются аксоны, покрытые малым количеством миелина или вообще не покрытые им. Скачки между шванновскими клетками не осуществляются, и импульс проходит гораздо медленнее.

Состав

Миелиновый слой состоит из двух слоев липидов и трех слоев белка. Липидов в нем гораздо больше (70-75%):

  • фосфолипиды (до 50%);
  • холестерин (25%);
  • глактоцереброзид (20%) и др.

Белковые слои тоньше липидных. Содержание белка в миелине – 25-30%:

  • протеолипид (35-50%);
  • основной белок миелина (30%);
  • белки Вольфграма (20%).

Существуют простые и сложные белки нервной ткани.

Роль липидов в строении оболочки

Липиды играют ключевую роль в строении мякотной оболочки. Они являются структурным материалом нервной ткани и защищают аксон от потери энергии и ионных потоков. Молекулы липидов обладают способностью восстанавливать ткани мозга после повреждений. Липиды миелина отвечают за адаптацию зрелой нервной системы. Они выступают в роли рецепторов гормонов и осуществляют коммуникацию между клетками.

Роль белков

Немаловажное значение в строении миелинового слоя имеют молекулы белков. Они наряду с липидами выступают в роли строительного материала нервной ткани. Их главной задачей является транспортировка питательных веществ в аксон. Также они расшифровывают сигналы, поступающие в нервную клетку и ускоряют реакции в ней. Участие в обмене веществ – важная функция молекул белка миелиновой оболочки.

Дефекты миелинизации

Разрушение миелинового слоя нервной системы – очень серьезная патология, из-за которой происходит нарушение передачи нервного импульса. Она вызывает опасные заболевания, зачастую несовместимые с жизнью. Существуют два типа факторов, влияющие на возникновение демиелинизации:

  • генетическая предрасположенность к разрушению миелина;
  • воздействие на миелин внутренних или внешних факторов.
  • Демиелизация делится на три вида:
  • острая;
  • ремиттирующая;
  • острая монофазная.

Почему происходит разрушение

Наиболее частыми причинами разрушения мякотной оболочки являются:

  • ревматические болезни;
  • существенное преобладание белков и жиров в питании;
  • генетическая предрасположенность;
  • бактериальные инфекции;
  • отравление тяжелыми металлами;
  • опухоли и метастазы;
  • продолжительные сильные стрессы;
  • плохая экология;
  • патологии иммунной системы;
  • длительный прием нейролептиков.

Заболевания вследствие демиелинизации

Демиелинизирующие заболевания центральной нервной системы:

  1. Болезнь Канавана – генетическое заболевание, возникающее в раннем возрасте. Его характеризуют слепота, проблемы с глотанием и приемом пищи, нарушение моторики и развития. Также следствием этой болезни являются эпилепсия, макроцефалия и мышечная гипотония.
  2. Болезнь Бинсвангера. Чаще всего вызвана артериальной гипертонией. Больных ожидают расстройства мышления, слабоумие, а также нарушения ходьбы и функций тазовых органов.
  3. . Может вызвать поражения нескольких частей ЦНС. Ему сопутствуют парезы, параличи, судороги и нарушение моторики. Также в качестве симптомов рассеянного склероза выступают поведенческие расстройства, ослабление лицевых мышц и голосовых связок, нарушение чувствительности. Зрение нарушается, меняется восприятие цвета и яркости. Рассеянный склероз также характеризуется расстройствами тазовых органов и дистрофией ствола мозга, мозжечка и черепных нервов.
  4. Болезнь Девика – демиелинизация в зрительном нерве и спинном мозге. Болезнь характеризуют нарушения координации, чувствительности и функций тазовых органов. Ее отличают серьезные нарушения зрения и даже слепота. В клинической картине также наблюдаются парезы, мышечная слабость и вегетативная дисфункция.
  5. Синдром осмотической демиелинизации . Возникает из-за недостатка натрия в клетках. Симптомами выступают судороги, нарушения личности, потери сознания вплоть до комы и смерти. Следствием заболевания являются отек головного мозга, инфаркт гипоталамуса и грыжа ствола мозга.
  6. Миелопатии – различные дистрофические изменения в спинном мозге. Их характеризуют мышечные нарушения, сенсорные расстройства и дисфункция тазовых органов.
  7. Лейкоэнцефалопатия – разрушение миелиновой оболочки в подкорке головного мозга. Больных мучают постоянная головная боль и эпилептические припадки. Также наблюдаются нарушения зрения, речи, координации и ходьбы. Снижается чувствительность, наблюдаются расстройства личности и сознания, прогрессирует слабоумие.
  8. Лейкодистрофия – генетическое нарушение метаболизма, вызывающее разрушение миелина. Течение болезни сопровождают мышечные и двигательные расстройства, параличи, нарушение зрения и слуха, прогрессирующее слабоумие.

Демиелинизирующие заболевания периферической нервной системы:

  1. Синдром Гийена-Барре – острая воспалительная демиелинизация. Она характеризуется мышечными и двигательными нарушениями, дыхательной недостаточностью, частичным или полным отсутствием сухожильных рефлексов. Больные страдают заболеваниями сердца, нарушением работы пищеварительной системы и тазовых органов. Парезы и нарушения чувствительности так же являются признаками этого синдрома.
  2. Невральная амиотрофия Шарко-Мари-Тута – наследственная патология миелиновой оболочки. Ее отличают нарушения чувствительности, дистрофия конечностей, деформация позвоночника и тремор.

Это лишь часть заболеваний, возникающих из-за разрушения миелинового слоя. Симптомы в большинстве случаев схожи. Точный диагноз можно поставить лишь после проведения компьютерной или магнитно-резонансной томографии. Немаловажную роль в постановке диагноза играет уровень квалификации врача.

Принципы лечения дефектов оболочки

Заболевания, связанные с разрушением мякотной оболочки, очень сложно лечить. Терапия направлена в основном на купирование симптомов и остановку процессов разрушения. Чем раньше диагностировано заболевание, тем больше шансов остановить его течение.

Возможности восстановления миелина

Благодаря своевременному лечению можно запустить процесс восстановления миелина. Однако, новая миелиновая оболочка не будет так же хорошо выполнять свои функции. Кроме того, болезнь может перейти в хроническую стадию, а симптомы сохранятся, лишь слегка сгладятся. Но даже незначительная ремиелинизация способна остановить ход болезни и частично вернуть утраченные функции.

Современные лекарственные средства, направленные на регенерацию миелина более эффективны, но отличаются очень высокой стоимостью.

Терапия

Для лечения заболеваний, вызванных разрушением миелиновой оболочки, используются следующие препараты и процедуры:

  • бета-интерфероны (останавливают течение заболевания, снижают риск возникновения рецидивов и инвалидности);
  • иммуномодуляторы (воздействуют на активность иммунной системы);
  • миорелаксанты (способствуют восстановлению двигательных функций);

  • ноотропы (восстанавливают проводниковую активность);
  • противовоспалительные (снимают воспалительный процесс, вызвавший разрушение миелина);
  • (предупреждают повреждение нейронов мозга);
  • обезболивающие и противосудорожные препараты;
  • витамины и антидепрессанты;
  • фильтрация ликвора (процедура, направленная на очищение спинномозговой жидкости).

Прогноз по заболеваниям

В настоящее время лечение демиелинизации не дает стопроцентного результата, но учеными активно ведутся разработки лекарственных средств, направленных на восстановление мякотной оболочки. Исследования проводятся по следующим направлениям:

  1. Стимуляция олигодендроцитов . Это клетки, производящие миелин. В организме, пораженном демиелинизацией, они не работают. Искусственная стимуляция этих клеток поможет запустить процесс восстановления разрушенных участков миелиновой оболочки.
  2. Стимуляция стволовых клеток . Стволовые клетки могут превращаться в полноценную ткань. Есть вероятность, что они могут заполнять и мякотную оболочку.
  3. Регенерация гематоэнцефалического барьера . При демиелинизации этот барьер разрушается и позволяет лимфоцитам негативно влиять на миелин. Его восстановление защищает миелиновый слой от атаки иммунной системы.

Возможно, в скором времени заболевания, связанные с разрушением миелина, перестанут быть неизлечимыми.

Авторы: В.П. ЧЕХОНИН, О.И. ГУРИНА, Т.Б. ДМИТРИЕВА, А.В. СЕМЕНОВА, Е.А. САВЧЕНКО, М.Э. ГРИГОРЬЕВ Лаборатория иммунохимии Государственного научного центра социальной и судебной психиатрии им. В.П. Сербского, г. Москва.
В обзоре рассмотрены физико-химические свойства, биологическая роль основного белка миелина – одного из белков, входящих в состав миелиновой оболочки. Приведены литературные данные, касающиеся процессов фосфорилирования, метилирования, ацилирования ОБМ в организме человека и животных. Продемонстрированы процессы взаимодействия с липидами. С использованием иммуногистохимических методов исследования, Northern анализа показан синтез ОБМ в онтогенезе. Большое внимание уделено анализу клинико-диагностической значимости ОБМ, а также перспективам применения его в качестве одного из критериев контроля течения рассеянного склероза, маркера нарушения процессов миелинизации при опухолях головного мозга, при гидроцефалии и другой неврологической патологии.

Ключевые слова: основной белок миелина, онтогенез, рассеянный склероз, гидроцефалия, опухоли головного мозга, демиелинизирующие заболевания.

ВВЕДЕНИЕ. Молекулярная организация миелина. Основная информация о структуре миелина получена с помощью рентгено-структурного анализа и электронной микроскопии . Уникальной морфологической особенностью миелина является то, что он формируется в результате спирального обвития отростков олигодендроглиоцитов в центральной нервной системе и шванновских клеток на периферии, вокруг аксонов нейронов . Таким образом, миелин представляет собой своеобразную мембрану, состоящую из липидного бислоя и белков, связанных с ним. В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы (ПНС) имеются отличия. При формировании миелина ЦНС один олигодендроглиоцит имеет связи с несколькими сегментами миелина нескольких аксонов; при этом к аксону примыкает отросток олигодендроглиоцита, расположенного на некотором расстоянии от аксона, а внешняя поверхность миелина соприкасается с внеклеточным пространством. Шванновская клетка при образовании миелина ПНС формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки между перехватами Ранвье. Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки .

Среди белков миелина выделяют так называемые внутренние (intrinsic) и внешние (extrinsic) белки . Первые прочно связаны с мембраной, проходя сквозь нее, в то время как другие, расположенные поверхностно, связаны слабее. Подобная мембрана является асимметричной по химическому составу и электрическому заряду. Ее экстрацеллюлярная поверхность богата углеводными остатками гликопротеинов и гликолипидов, при этом С-конец гликопротеинов находится на цитоплазматической стороне мембраны, тогда как полисахаридный остаток экспонирован на экстрацеллюлярной поверхности. Расстояние между разнонаправленными гидрофильными группировками липидов в мембране миелина составляет 4,5-5,0 нм, в то время как расстояние между соседними витками спирали - 3,0-5,0 нм. Толщина мультиламеллярного образования, сформированного исключительно липидами, составляет 1,5-3,0 нм .

Процесс формирования миелина отростками глиальных клеток сопровож-дается вытеснением цитоплазмы таким образом, что цитоплазматические поверх-ности мембраны плотно соприкасаются друг с другом, образуя так называемую главную плотную линию (major dense line). Плотный контакт наружных поверхностей мембран, образующихся при спиралевидном обвитии отростков миелинобразующих клеток вокруг аксонов нейронов, способствует формирова-нию, так называемой межпромежуточной линии (interperiod line)
Одной из биохимических характеристик, которая отличает миелин от других биологических мембран, является высокое соотношение липид/белок. Белки составляют от 25 до 30% массы сухого вещества миелиновой оболочки. На долю липидов приходится приблизительно 70-75% от сухой массы белого вещества ЦНС млекопитающих; в миелине спинного мозга соотношение липиды:белки выше . Из общего количества липидов на долю холестерола приходится около 28%, 43% – на фосфолипиды и 29% составляют галактолипиды. Известно, что липиды оказывают существенное влияние на конформационные характеристики белков, входящих в состав мембраны миелина; последние в свою очередь влияют на свойства липидов .
Основной функцией миелина является быстрое проведение нервного импульса по аксонам, которые он окружает. Мембраны клеток, формирующих миелин, плотно соприкасаются, что обеспечивает высокое сопротивление и малую емкость, обеспечивая, таким образом, аксону эффективную изоляцию и предотвращая продольное распространение импульса. Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длинной примерно 1 мм. В связи с тем, что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведет к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5-10 раз быстрее, чем по немиелинизированным .
Помимо передачи нервного импульса, миелин участвует в питании нервного волокна, а также выполняет структурную и защитную функции

Основной белок миелина

Строение, физико-химические свойства. При электрофоретическом анализе в ПААГ с SDS экстрактов миелиновой оболочки человека определяется до 10 полос. Основную полосу (около 50% всех белков), составлял протеолипидный белок (PLP) с молекулярной массой 30 кДа.
Вторыми в количественном соотношении (около 30%) были белки, входящие в так называемую группу основных белков миелина (ОБМ), соответствующие молекулярным массам от 17 до 21,5 кДа. Данную группу составили 3 изоформы ОБМ с молекулярными массами 21,5 кДа, 18,5 кДа и 17,5 кДа. Первая из них кодируется 7 экзонами; в результате делеции 2 экзонов синтезируется белок молекулярной массой 18,5 кДа. При кодировании же изоформы массой 17,5 кДа были подвержены делеции 5 экзонов . Показано, что ген ОБМ человека расположен на 18 хромосоме и имеет 3 промоторные области, с которых начинается считывание информации .
У различных видов животных было также показано наличие нескольких изоформ данного белка . Так, ОБМ крысы включает в себя 4 изоформы с молекулярными массами 21,5, 18,5, 17,0 и 14,0 кДа. Интересно, что изоформы ОБМ массами 21,5 и 18,5 кДа кодируются экзонами, комплементарными человеческим, за небольшим исключением, касающимся незначительных перестановок последовательностей. В изоформе ОБМ с массой 17,0 кДа делеции подвержен 6 экзон. Делеция 2 и 6 экзонов наблюдается при кодировании изоформы белка массой 14,0 кДа. Эти две изоформы ОБМ крысы, таким образом, не имеют человеческих аналогов. Кроме того, доказано наличие изоформ ОБМ с молекулярными массами 21,5, 17,0 и 14,0 кДа в ткани ЦНС мыши . Низкомолекулярные изоформы белка образуются путем делеции участка хромосомы, кодирующего аминокислотные последовательности в области С-конца. Недавние исследования показали наличие ОБМ с молекулярной массой 21,5 кДа в мозге барана, при этом было доказано, что он не является предшественником низкомолекулярных изоформ белка. Кроме того, ОБМ с молекулярной массой 13,5 кДа был идентифицирован в мозге серебряного карася .
В настоящий момент полностью установлена аминокислотная последовательность 18,5 кДа изоформы ОБМ человека , морской свинки , свиньи . Проводятся исследования по определению аминокислотной последовательности ОБМ кролика, быка, обезьяны .
Интересен тот факт, что человеческий ОБМ имеет вариации последовательностей аминокислот в 46 и 47 положении. Здесь может находиться глицин, как самостоятельно, так и в сочетании с серином . Согласно более ранним исследованиям, у больных с рассеянным склерозом отмечалась замена серина на глицин в 44-49 положениях .
Показано, что среди млекопитающих имеется значительная степень гомологии между аминокислотными последовательностями ОБМ .
Рядом авторов была показана высокая степень гомологии – порядка 80-90% аминокислотной последовательности ОБМ у различных видов животных. Так, аминокислотные последовательности ОБМ человека и быка имеются различия аминокислотных остатков лишь в нескольких положениях, в то время как ОБМ крысы отличаются от ОБМ человека и быка положением 40 аминокислотных остатков в середине полипептидной цепи (от 118 до 157 остатка).
ОБМ содержит необычайно высокий процент (приблизительно 25%) основных аминокислот (аргинин, лизин и гистидин), равномерно распределенных по всей полипептидной цепи, что и обусловливает очень высокую изоэлектрическую точку ОБМ (рI=12-13) . Основная изоформа ОБМ с молекулярной массой 18,5 кДа) в дальнейшем может быть субфракционирована в щелочной среде по зарядам. Подобная неоднородность заряда увеличивается в результате фосфорилирования и дезаминирования in vivo. В процессе дальнейшего выделения белка происходит дополнительное дезаминирование и деградация в области С-конца. Такая гетерогенность зарядов может варьировать у различных индивидуумов в зависимости от возраста и патологического состояния организма .
Фосфорилирование ОБМ. Процесс фосфорилирования является основным источником гетерогенности. Процесс фосфорилирования ОБМ в оптическом нерве крысы возрастает в процессе развития . Фосфорилирование может способствовать приобретению молекулой белка гидрофильных свойств и уменьшать величину положительного заряда. Таким образом, фосфорилированная форма ОБМ должная в наименьшей степени взаимодействовать с анионными фосфолипидами. Это отражается в снижении способности фосфорилированных форм белка к индукции агрегации пузырьков . Кроме этого, и способы модификации, обусловливающие изменения его заряда, влияют на данную способность, а также изменяют организацию липидного слоя .
Наличие в миелине протеинкиназной и фосфорилазной активности объясняют способностью регулировать чрезмерное фосфорилирование ОБМ. Протеинкиназа миелина, выделенного из мозга человека, способна активироваться как кальцием или сАМР , так и фосфатидилинозитол-4-фосфатом . Наличие высоких концентраций фосфатидилинозитолкиназы отмечается в миелине, выделенном из головного мозга быка .
Данный фермент может быть вовлечен в регуляцию механизма контроля чрезмерного фосфорилирования белка. Остатки белка, подвергающиеся фосфорилированию в условиях in vitro, зависят от вида протеинкиназы . Протеинкиназа С важна в качестве регулятора клеточного числа. ОБМ является благоприятным субстратом для действия данного фермента . Некоторые участки этого белка являются специфическими ингибиторами активности протеинкиназы С. Так, было продемонстрировано, что деградация миелина может возрастать при ослаблении регуляторного контроля, обеспечиваемого данным ферментом. Миелиногенез осуществляется при адгезии олигодендроцита к субстрату. Этот процесс сопутствует активации фосфорилирования ОБМ протеинкиназой С . Кроме того, процесс фосфорилирования ОБМ также регулируют ганглиозиды . Фосфорилирование, катализируемое протеинкиназой С, стимулируется ганглиозидами; в то время, как фосфорилирование других участков белка, катализируемое сАМР-зависимой протеинкиназой, ими тормозится. Ганглиозиды подавляют также активацию протеинкиназы С диацилглицеролом. Участки молекулы ОБМ, подвергающиеся фосфорилированию in vitro, были выявлены методом высокоэффективной хроматографии высокого давления. Фосфорилирование in vivo происходит по-разному у различных видов млекопитающих, так, у быка, оно осуществляется в 97 и 165 положениях; у кролика – в 7, 56, 96, 113, 163 положениях. Кроме того, было выявлено, что в развивающемся мозге мыши, процессы фосфорилирования начинаются на самых ранних стадиях , что подтверждает предположение о непосредственном их участии в механизмах миелинизации.
Метилирование ОБМ. Другое преобразование белка, происходящее посттранскрипционно, заключается в метилировании одиночного аргининового остатка в 107 положении. Процесс катализируется специфическим ферментом аргинин-метилтрансферазой. Экспрессия данного фермента регулируется тиреоидными гормонами .
Степень метилирования ОБМ значительно варьирует в процессе развития. На исключительную важность метилирования ОБМ указывает тот факт, что инициация демиелинизации возможна при ингибировании биосинтеза S-аденозил-L-метионина циклолейцином, а формирование компактной структуры миелина подавляется синефунгином – ингибитором метилтрансферазы. S-аденозил-L-метионин является донором метильных групп для аргининового остатка ОБМ . У мышей линии jimpy, характеризующихся гипомиелинизацией, отмечается более низкий, по сравнению с нормальными, уровень ОБМ-специфичной аргинин-N-метилтрансферазы. Процесс миелинизации не может быть успешно завершен при нормальном уровне синтеза ОБМ потому, что метилирование белка не протекает в достаточной степени и становится невозможным его интеграция в миелиновую мембрану. Недавние исследования показали, что у этих мышей страдает и уровень синтеза ОБМ, а также полностью отсутствует синтез PLP. Отсутствие последнего может критически влиять на способность ОБМ внедряться в миелиновую мембрану .
У другой линии мутантных мышей shiverer, нарушение процесса миелинизации происходит в результате иных механизмов . Мыши shiverer являются мутантными аутосомными рецессивными мышами, с дефицитом содержания миелина в ЦНС. Данная мутация заключается в делеции 20 т.п.о. гена, которая приводит к отсутствию ОБМ . Гомозиготные мыши являются отличной поведенческой моделью, у которых наблюдается около 12 дня постнатального развития дрожание, конвульсии и ранняя смерть. Морфологический анализ показал практически полное отсутствие миелина в ткани мозга со слабо миелинизированными аксонами. Миелин у этих мышей был аномальным, представлял собой неплотную оболочку, что косвенным образом свидетельствовало о том, что ОБМ необходим для формирования плотности оболочки . Напротив, миелин ПНС у мышей shiverer был качественно и количественно нормальным, с нормальной толшиной и структурой, относительно небольшие аномалии миелина наблюдались на рентгенограммах седалищного нерва у взрослых мышей shiverer . Биохимические изучения миелина у мышей shiverer показали некоторые изменения в количестве липидов. Однако, отсутствие у таких мышей ОБМ не нарушает формирование компактного миелина в ПНС, которое, возможно, компенсирует другой белок миелина – Pо .
Известно, что все изоформы ОБМ могут подвергаться ацетилированию N-конца. Однако и свободный С-конец способен подвергаться действию карбоксипептидаз. ОБМ подвержен действию различных протеолитических ферментов. Гидролиз белка под действием катепсина D ускоряется в присутствии кислых липидов. Этот процесс может быть ограничен как ферментативно, так и неферментативно при деградации ОБМ в процессе изоляции. Этот метод основан на хроматографическом удалении примесей протеолитических ферментов и исключении неферментативной деградации при высоких значениях рH и температур .
Показано, что минорные фракции ОБМ содержат ковалентно связанный в области серинового остатка в 54 положении фосфатидилинозитолбисфосфат. В процессе экспериментального аллергического энцефаломиелита степень связывания фосфатидилинозитолбисфосфата сначала снижается, а затем возрастает .
Изучение структурной организации молекулы ОБМ в растворе проводились с помощью ЯМР-спектроскопии, флуоресцентной спектроскопии, калориметрии, а также с применением иммунологических методов анализа .
В растворе ОБМ имеет тенденцию к самоассоциации, которая играет важную роль в поддержании компактной структуры миелина. Белок в растворе представлен смесью мономер-гексамерных форм с преобладанием цепей с b-структурой . Преобладание b-структуры и формирование a-структуры индуцируется в фрагментах ОБМ при переносе из водной фазы в трифторэтанол .
Взаимодействие ОБМ с липидами. ОБМ как мембранный компонент, имеет значительное сродство к липидам, с которыми в комплексе и выделяется . Кроме того, будучи поликатионом, ОБМ формирует наиболее стабильные комплексы с анионными липидами . Но, несмотря на то, что степень связывания ОБМ значительно выше с кислыми липидами, она достаточно выражена и в отношении цвиттер-ионов, особенно – со сфингомиелином. ОБМ также взаимодействует с фосфатидилэтаноламином при рН 7,2, где этот липид находится преимущественно в цвиттер-форме. Удивительна способность ОБМ формировать нерастворимые комплексы с SDS как выше, так и ниже изоэлектрической точки .
При формировании комплексов ОБМ с основной массой анионных фосфолипидов, играют роль в равной степени как гидрофобные, так и электростатические взаимодействия . Наиболее выраженное влияние на стабилизацию липидов ОБМ оказывает при интеграции в липидные хвосты .
ОБМ также способствует освобождению глюкозы из многослойных липосом, содержащих GM4 ганглиозид, который является специфическим маркером миелина и олигодендроглии в ЦНС .
Как было показано методом рентгеноструктурного анализа, при формировании миелина происходит погружение большей части ОБМ в слой липидных головок. Известно, что ОБМ ускоряет формирование мультислоя фосфатидилглицерола и индуцирует формирование многослойной мембранной структуры с двойной периодичностью бислоя. Холестерол может увеличивать связывание протеина с поверхностью бислоя, открывая каналы между диацил-липидными головками .
Smith предположил, а работы Yohg и Cheifetz подтвердили, что ОБМ является стимулятором везикулярной агрегации, которая служит моделью молекулярных взаимодействий, имеющих важное значение для формирования компактной структуры миелина и его стабилизации в мультиламелярной структуре мембраны. ОБМ способен индуцировать агрегацию пузырьков, содержащих только фосфатидилхолин, однако степень агрегации значительно усиливается кислыми фосфолипидами. Агрегация фосфолипидных пузырьков под влиянием ОБМ значительно усиливается в присутствии алифатических альдегидов . Высказываются предположения, что возрастание уровня алифатических альдегидов может быть связано с демиелинизирующими заболеваниями . Холестерол увеличивает способность ОБМ к стимуляции агрегации пузырьков фосфатидилсерина .
Brady et. al. , а также Sridhara et. al. показали некоторые различия в свойствах ОБМ, выделенного из нормального миелина и ОБМ, выделенного из ткани мозга больных рассеянным склерозом (РС). ОБМ нормального миелина более активен в отношении индукции формирования многослойной структуры с фосфатидилглицеролом и инициации агрегации везикул фосфатидилхолина . Независимо от источника выделения ОБМ (нормальный миелин или миелин при РС), было показано, что компоненты белка, имеющие одинаковый заряд, в равной степени способны индуцировать формирование липидного мультислоя. Также было показано, что отличия ОБМ из нормального миелина и из миелина при РС, вызваны различием зарядов изомеров, входящих в состав ОБМ .
ОБМ в филогенезе и онтогенезе. Как филогенетически, так и онтогенетически, появление ОБМ может быть связано с дифференцировкой олигодендроглиоцитов и шванновских клеток. В процессе эволюции нервной системы позвоночных дифференцировка глии на клетки двух типов совпадает с появлением миелинизированных волокон, а также с ограничением способности к функциональной регенерации.
Сравнительные исследования ОБМ из ткани мозга различных биологических видов животных показали значительное межвидовое сходство. ОБМ выделен и очищен, а также описаны его свойства из ткани мозга человека, быка, крысы, мыши, морской свинки .
Обнаружение филогенетического сходства гликопротеинов у различных биологических видов дало основание провести исследование этого белка в процессе онтогенеза. Так, Grever и et. al. проводили с помощью иммуногистохимического и Northern blott анализа количественное определение ОБМ в ткани спинного мозга плодов человека с 12 до 24 недели гестации. Развитие структуры миелина исследовали с помощью электронной микроскопии. Тридцать восемь образцов спинного мозга плодов были получены после прерывания внематочной беременности. В период между 12 и 18 неделями гестации показано 15,8-кратное увеличение синтеза ОБМ мРНК. С 18 по 24 недели гестации синтез ОБМ мРНК увеличился в 2,2 раза.
Параллельно проведенный иммуноблот-анализ показал 90,5-кратное увеличение ОБМ (от 0,147 нг/мг до 13,3 нг/мг) между 12 и 18 неделями гестационного развития и приблизительно 11,5-кратное увеличение между 18 и 24 неделями гестации (с 13,3 до 154 нг/мг ткани). Иммуноцитохимический анализ также показал повышение степени окрашивания на ОБМ с увеличением гестационного возраста. У плода с гестационным возрастом 12 недель ОБМ определялся во всех трех боковых канатиках спинного мозга, с 18 недель гестационного развития ОБМ экспрессировался во всем белом веществе мозга, за исключением боковых кортикоспинальных путей и ростральных уровней fasciculus gracilis. Авторы также исследовали структуру миелина с помощью электронной микроскопии. В 12 недель гестации миелиновая оболочка представляла собой редкую неуплотненную пластину, в 18 недель гестации наблюдались отдельные точки компактного миелина, которые экспрессировали ОБМ, в 24 недели гестации компактный миелин наблюдался во всем белом веществе спинного мозга. Таким образом, авторами было продемонстрировано количественное увеличение экспрессии ОБМ, связанное с формированием миелина в течение второго триместра беременности.
Weidenheim и соавт. с помощью иммуногистохимического анализа определяли ОБМ в ткани спинного мозга (в цервикальном, грудном и люмбосакральном уровнях) и стволовой части головного мозга эмбрионов человека на протяжении первого и второго триместров беременности. С 9-10 недель гестации ОБМ-позитивные олигодендроглиоциты наблюдались по периферии эпиндимы. В переднем и боковом канатиках экспрессия ОБМ олигодендроглиоцитами отмечалась с 10-12 недель гестационного развития. В заднем канатике ОБМ детектировался на более поздних сроках гестационного развития, чем в антилатеральном белом веществе. ОБМ с 10 недели гестации обнаруживался в основном по срединной линии ствола мозга и экспрессировался латеральнее на протяжении второго триместра беременности. Таким образом, авторы заключили, что ОБМ присутствует с 10 недель гестации антилатерально в цервикальной области спинного мозга и срединной линии стволовой области мозга и экспрессируется в рострально-хвостовом направлении от антилатеральной к задней области. Исключением, однако, является область fasciculus gracilis, которая имела большее количество ОБМ-положительных клеток на поясничном уровне, чем в более ростральных областях.
Аналогичные результаты были получены и другими исследователями .
Таким образом, приведенные выше факты свидетельствуют об общем явлении эмбриогенеза человека: начало синтеза нейроспецифических антигенов приходится на 10-18 недели гестации.

Клинико-диагностическое значение ОБМ

Применение ОБМ в качестве маркера деструкции миелина открыло новое направление в нейробиологии, посвященное исследованию значимости этого антигена в диагностике демиелинизирующих заболеваний .
Основная часть этих работ посвящена анализу ОБМ в спинномозговой жидкости (СМЖ) больных рассеянным склерозом . В частности, в работе Thompson и соавт. приводятся результаты определения ОБМ с помощью конкурентного радиоиммунного анализа в пробах СМЖ 221 пациента с рассеянным склерозом. В качестве группы сравнения были выбраны пациенты с различной неврологической патологией (85 человек). При этом повышение концентрации ОБМ было выявлено у 46 из 55 пациентов (84%) с рецидивом рассеянного склероза на протяжении 6 недель и только у 11 из 84 пациентов (13%) с другими неврологическими заболеваниями. При этом имелась четкая корреляция между уровнем ОБМ в СМЖ и тяжестью рецидива (Р Кроме диагностики рассеянного склероза, ряд работ посвящен сравнительному исследованию ОБМ при целом ряде других заболеваний, сопровождающихся процессом демиелинизации. Так, Lamers et. al. методом РИА изучали концентрации ОБМ (наряду с исследованием концентраций NSE и S-100) в СМЖ детей и взрослых с различной неврологической патологией: у больных с рассеянным склерозом (хронически-прогрессивным, рецидивирующе-ремиттирующим и комбинацией обоих типов), при цереброваскулярных нарушениях (с ишемическим и геморрагическим инсультами), у пациентов с деменцией (сосудистой и Альцгеймеровского типа) и при инфекциях ЦНС . Достоверно более высокие уровни ОБМ наблюдались в группе больных с рассеянным склерозом; также достоверное повышение уровней ОБМ отмечалось при цереброваскулярных инсультах и в группах детей с эцефалопатиями.
Несомненно, заслуживают внимания работы, посвященные количественному анализу ОБМ при гидроцефалии. Так, Longatti et. al. исследовали уровень ОБМ у детей первого года жизни, страдающих постгеморрагической гидроцефалией. Авторами было показано значительное увеличение концентраций этого белка в динамике гидроцефалии. Ранее этими же авторами был продемонстрирован феномен более чем 20-кратного увеличения концентрации ОБМ в образцах СМЖ больных с гидроцефалией, полученных при вентрикулярной пункции по сравнению с люмбальной. В то же время, после проведения операции шунтирования отмечалось значительное снижение уровня ОБМ в СМЖ при вентрикулярной пункции. В результате проделанных исследований, авторы делают вывод о том, что анализ ОБМ в СМЖ при гидроцефалии может служить маркером активности развития гидроцефалии, и рекомендуют применение иммунохимического мониторинга ОБМ в динамике и при прогнозировании постгеморрагических гидроцефалий, а также в качестве одного из основополагающих критериев для проведения операции шунтирования. Результаты этой работы нашли экспериментальное подтверждение в исследованиях Del Bigio et. al. , которые выдвинули гипотезу о том, что прогрессирующая гидроцефалия может вызывать задержку процессов миелинизации. Исследователи вызывали гидроцефалию у 3-дневных крысят путем введения каолина в большую цистерну. В результате этой работы было показано, что гидроцефалия способна вызвать задержку процесса миелинизации. В то же время, своевременная операция шунтирования может активировать комплекс процессов компенсаторной миелинизации, однако, в случае длительной экспозиции гидроцефалии, процессы восстановления белого вещества весьма проблематичны.
Интересными, на наш взгляд, являются работы посвященные исследованию концентраций ОБМ в СМЖ и в сыворотке крови больных с опухолями головного мозга. Так, Nakagawa et. al. провели количественное определение ОБМ методом РИА у пациентов с различными видами глиальных опухолей, включая злокачественные. Высокие концентрации ОБМ (выше 4 нг/мл) авторы выявили у пациентов с диссеменацией злокачественных опухолей в мозговую оболочку. В случаях позитивной реакции организма пациентов на химио- или рентгенотерапию (что подтверждалось с помощью КТ, ЯМР, при общем и цитологическом исследовании СМЖ, а также клиническом обследовании), обнаруживалось достоверное снижение концентрации ОБМ в биологических жидкостях, а некоторых случаях даже до уровня нормы. В СМЖ шести пациентов со злокачественными глиомами без метастазирования концентрация ОБМ была значительно выше нормы до начала химиотерапии, а во время лечения наблюдалось дальнейшее повышение уровня ОБМ, однако после окончания химиотерапии концентрация ОБМ снизилась до уровня нормы. У некоторых пациентов со злокачественными глиомами, сопровождающимися метастазированием, авторы отмечали снижение концентраций ОБМ до 4 нг/мл после комплекса проведенных операций по удалению опухолей и химиотерапии (или облучения) в случаях благоприятного клинического течения. Таким образом, был сделан вывод о перспективности применения количественного мониторинга ОБМ для диагностики и прогнозирования течения опухолевых процессов, обусловленных глиомами.
Серия исследований Yamazaki et. al. была посвящена количественному динамическому анализу ОБМ и NSE в сыворотке крови больных с острыми травмами головного мозга. У пациентов в остром периоде после черепномозговой травмы уровни ОБМ в сыворотке крови динамично возрастали с 1,4 нг/мл до 11,3 нг/мл и были достоверно ниже, чем у пациентов с прогностически неблагоприятным исходом (смерть пациентов).
Авторы исследования пришли к выводу, что концентрация ОБМ в сыворотке крови коррелирует со степенью повреждения ткани мозга и определение уровня этого белка, наряду с определением NSE, может служить достоверным лабораторным маркером объема и степени повреждения ткани мозга при острых черепно-мозговых травмах. Аналогичное заключение было сделано ранее и Noseworthy et. al. , которые проводили исследования концентрации ОБМ в сыворотке крови у пациентов в динамике спустя 7 дней, 3 и 6 месяцев после острой черепно-мозговой травмы.
Интересным является цикл работ, посвященных изучению диагностической роли анти-ОБМ-антител в сыворотке крови и СМЖ пациентов с различными неврологическими заболеваниями. При этом, хотя и наибольшее количество исследований посвящено диагностике рассеянного склероза , вряд ли есть основания сделать однозначный вывод о каких-либо перспективах применения анти-ОБМ-антител в диагностике этого заболевания.
Так, группа исследователей под руководством K.G. Warren проводила радиоиммунный анализ анти-ОБМ-антител в СМЖ больных с рассеянным склерозом и другими неврологическими заболеваниями. Авторы выделили два вида антител к ОБМ: «свободные» и «связанные» антитела. При остром рецидиве рассеянного склероза, соотношение концентраций «свободных» и «связанных» антител был выше единицы, в то время, как у пациентов с хроническим вариантом заболевания это соотношение было ниже единицы. По мере наступления ремиссии у пациентов с острым рецидивом, коэффициент постепенно уменьшался и в конечном итоге, антитела на пределе чувствительности метода не обнаруживались. У пациентов с хроническим течением рассеянного склероза выведение антител происходило более медленно и в СМЖ низкие значения антител определялись более длительное время. Кроме изучения динамики элиминации антител в образцах сыворотки крови и СМЖ больных с рассеянным склерозом, авторы выявили анти-ОБМ-антитела в образцах СМЖ больных с острым идиопатическим невритом (преимущественно "свободные" антитела), что дало им основание предположить наличие аутоиммунного компонента в патогенезе острого идиопатического неврита.
Но в тоже время, Brokstad et. al. не выявили анти-ОБМ-антител при иммунохимическом исследовании сыворотки крови и СМЖ пациентов с рассеянным склерозом, а также другими неврологическими заболеваниями.
Приведенные данные, достаточно информативно показывают ценность ОБМ как иммунохимического маркера олигодендроглиоцитов и шванновских клеток при фундаментальных и клинических исследованиях, а также необходимость разработки тест-систем определения данного белка и анти-ОБМ-антител в СМЖ и сыворотке крови.

ЛИТЕРАТУРА

1. Beniac D.R., Wood D.D., Palaniyar N. (2000) J Struct Biol., 129 (1). 80-95;
2. Epand R.M. (1988) In: Neuronal and glial proteins: structure, function and clinical application., 231-265;
3. Facci P., Cavatorta P., Cristofolini L. (2000) Biophys J., 78 (3), 1413-1419;
4. Holton T., Ioerger T.R., Christopher J.A. (2000) Acta Crystallogr. D Biol. Crystallogr., 56 (Pt 6), 722-734;
5. Kleywegt G.J. (1999) Acta Crystallogr. D Biol. Crystallogr., 55 (11), 1878-1884;
6. Kirschner D.A., Ganser A.L., Caspar D.L. (1984). In: Myelin (P. Morell, ed.), 2nd Ed., Plenum: New York, рр. 51-95
7. Pritzker L.B., Joshi S., Harauz G. (2000) Biochemistry, 39 (18), 5382-5388;
8. Riccio P., Fasano A., Borenshtein N. (2000), J. Neurosci. Res., 15, № 59 (4), 513-521;
9. Raine C.S. (1984) In: Myelin (P. Morell, ed.), 2nd Edn., Plenum: New York, pp. 1-50
10. Balendiran G.K., Schnutgen F., Scapin G. (2000), J. Biol. Chem., 275, 27045-2754;
11. Grever W.E., Chiu F.C., Tricoche M. (1996), J. Comp. Neurol., 376 (2), 306-314;
12. Garbay B., Heape A.M., Sargueil F. et al. (2000), Progr. Neurobiol., 61, 267-304;
13. Grever W.E., Weidenheim K.M., Tricoche M. (1997), J Neurosci Res, 47, 332-340;
14. Braun P.E. (1984) In: Myelin (P. Morell, ed.), 2nd Ed., Plenum: New York, 97-113
15. Cuzner M.L., Norton W.T. (1996), Brain Pathol, 6 (3), 231-242;
16. Kirschner D.A., Blaurock A.E. (1991) In: Myelin. Biology and chemistry. (R.E. Martenson, ed.), CRC Press: Boca Raton, Florida, pp. 413 - 448
17. Norton W.T., Cammer W. (1984) Isolation and characterization of myelin. In: Myelin (Ed. Morell P.) Plenum Press, N-Y, pp.147-195;
18. Shults C.W., Whitaker J.N., Wood J.G. (1978), J. Neurochem., 30, 1543-1551;
19. Campagnoni A.T., Pribyl T.M., Campagnoni C.W. et al. (1993), J. Biol. Chem., 268, 4930 – 4938.
20. Kamholz J., De Ferra F., Puckett C. (1986), Proc. Natl. Acad. Sci. USA, 83, 4962 – 4966.
21. Devine-Beach K., Lashgari M.S., Khalili K. (1990), J Biol Chem, 265, 13830-1385;
22. Roach A., Takahashi N., Pravtcheva D. et al (1985), Cell, 42, 149-155;
23. Jacque C., Delassalle A, Raoul M (1983), J Neurochem, 41 (5), 1335-1340;
24. Ohta M., Ohta K., Ma J. (2000), Clin Chem, 46 (9), 1326-1330;
25. Barbarese E., Braun P.E., Carson J.H. (1977), Proc. Natl. Acad. Sci. USA, 74, 3360-3364.
26. Carnegie P.R. (1971), Nature (London), 229, 25 – 28;
27. Roots B.I., Agrawal D., Weir G. et al. (1984), J. Neurochem., 43, 1421-1424;
28. Белик Я.В. (1980), От химической топографии мозга к нейроспецифическим белкам и их функциям. Биохимия животных и человека: Биохимия белков нервной системы, c. 11-22.
29. Терлецкая Я.Т., Белик Я.В., Козулина Е.П. и др. (1987), Молекулярная биология, N 21, 15-26;
30. Gibson B.W., Gilliom R.D., Whitaker J.N. (1984), J. Biol. Chem., 259 (8), 5028-5031.
31. Deibler G.E., Martenson R.E., Krutzsch H.C. et al (1984), J. Neurochem., 43, 100-105.
32. Kira G., Deibler G., Krutzsch H.C. et al. (1985), J. Neurochem., 44, 134-142;
33. Deibler G.E., Krutzsch H.C. and Martenson R.E. (1985), J. Biol. Chem., 260 (1), 472-474;
34. Chou C.-H., Chou F. C.-H., Kowalski T.J. et al. (1978), J. Neurochem., 30, 745 - 750;
35. Day E.D. (1981) Contemp. Top. Mol. Immunol., 8, 1-39.
36. Day E.D., Hashim G.A., Varitek V.A. et al (1981), J. Neuroimmunol., 1 (3), 311-324.
37. Chevalier D., Allen B.G. (2000), Protein Exp. Purif., 18 (2), 229-234;
38. Wong R.W. (1999), Mol. Biotechnol., 13 (1), 17-19.
39. Riederer B., Honegger C.G., Tobler H.J. et al (1984) Gerontology, 30, 234-239;
40. Murray N., Steck A.J. (1984), J. Neurochem., 43, 243-248.
41. Cheifetz S., Moscarello M.A. (1985) Biochemistry, 24, 1909-1914.
42. Brady G.W., Fein D.B., Wood D.D. et al (1985) Biochem. Biophys. Res. Commun., 126, 1161-1165.
43. Wu N.C., Ahmad F. (1984) Biochem. J, 218, 923-932.
44. Deshmukh D.S., Kuizon S., Brockerhoff H. (1984), Life Sci., 34, 259-264.
45. Saltiel A.R., Fox J.A., Sherline P. (1987), Biochem. J., 214, 759-763.
46. Kishimoto A., Nishiyama K., Nakanishi H. et al (1985), J. Biol. Chem., 260, 12492-12499.
47. Wise B.C., Glass D.B., Chou C.H. et al (1982), J. Biol. Chem., 257, 8489-8495.
48. Vartanian T., Szuchet S., Dawson G. et al (1986), Science, 234, 1395-1398.
49. Chan K.-F. J. (1987), J. Biol. Chem., 262, 2415-2422.
50. Ulmer J.B., Braun P.E. (1986), Develop. Biol., 117, 502-510.
51. Amur S.G., Shanker G., Pieringer R.A. (1984) J. Neurochem., 43, 494-498.
52. Sorg B., Agrawal D., Agrawal H. et al (1986) J. Neurochem., 46, 379-387.
53. Kim S., Tuck M., Kim M. (1986) J. Neurosci. Res., 16, 357-365.
54. Molineaux S.M., Engh H., De Ferra F. et al (1986) Proc. Natl. Acad. Sci. USA, 83, 7542-7546.
55. Shine H.D., Readhead C., Popko B. (1992) J. Neurochem. 58 (1), 342-349.
56. Kirschner D.A., Ganser A.L. (1980) Nature, 283, 207-210.
57. Martini R., Zielasek J., Toyka K. et al (1995) Nature Genet., 11, 281-286.
58. Williams K.R., Williams N.D., Konigsberg W. et al. (1986) J. Neurosci. Res., 15, 137-145.
59. Chiu K.C., Westall F., Smith R.A. (1986) Biochem. Biophys. Res. Commun., 136, 426-432.
60. Deibler G.E., Burlin T.V., Stone A.L. (1995) J. Neurosci. Res., 15, 819-827.
61. Fraser P.E., Deber C.M. (1985) Biochemistry, №13, 4593-4598;
62. Kobayashi N., Freund S.M., Chatellier J. et al (1999) J. Mol. Biol., 292 (1), 181-190;
63. Smith R. (1985) FEBS Lett, 183, 331-334;
64. Martenson R.E., Mendz G.L., Moore W.J. (1985) Biochem. Biophys. Res. Commun., 131, 1269-1276.
65. Riccio V. , Tsugita A., Bobba A. et al (1985) Biochem. Biophys. Res. Commun., 127, 484-492.
66. Moscarello M.A., Chia L.S., Leighton D. et al (1985) J. Neurochem. 45 (2), 415-421.
67. Moskaitis J.E., Campagnoni A.T. (1986), Neurochem. Res., 11, 299-315.
68. Boggs J.M., Moscarello M.A. (1984) Can J. Biochem. Cell. Biol., 62, 11-18.
69. Boggs J.M., Moscarello M.A., Papahadjopoulos D. (1982) In: Lipids and protein interactions (Eds. P.Jost and O.H. Griffith), vol. 2, pp.27-51;
70. Boggs J.M., Rangaraj G., Koshy K.M. (1999) J. Neurosci. Res., 57, 529-535;
71. Mullin B.R., Decandis F.X., Montanaro A.J. et al (1981) Brain Res, 222, 218-221.
72. Brady G.W., Murthy N.S., Fein D.B. et al (1981) Biophys. J., 34, 345-350.
73. Sedzik J., Blaurock A.E., Hoechli M. (1984) J. Mol. Biol., 174, 385-409.
74. Smith R. (1977) Biochim. Biophys. Acta, 470, 170-184.
75. Yohg P.R., Vacante D.A., Synder W.R. (1982) J. Am. Chem. Soc., 104, 7287-7291.
76. Fu S.C., Mozzi R., Krakowka S. et al (1980), Acta Neuropathol. (Berl), 49 (1), 13-18.
77. Walker A.G., Rumsby M.G. (1985) Neurochem. Int., 7, 441-447.
78. Sridhara S., Epand R.M., Moscarello M.A. (1984) Neurochem. Res., 9, 241-248.
79. Weidenheim K.M., Epshteyn I., Rashbaum W.K. (1993) J. Neurocytol, 22 (7), 507-516
80. Weidenheim K.M., Bodhireddy S.R., Rashbaum W.K. (1996) J. Neuropathol. Exp. Neurol., 55 (6), 734-745.
81. Bodhireddy S.R., Lyman W.D., Rashbaum W.K. (1994) J. Neuropathol. Exp. Neurol., 53 (2), 144-149.
82. Zecevic N., Andjelkovic A., Matthieu J. (1998) Brain Res. Dev. Brain. Res., 14, 97-108.
83. Хохлов А.П., Савченко Ю.Н. (1990) Миелинопатии и демиелинизирующие заболевания, Медицина.
84. Annunziata P., Pluchino S., Martino T. (1997) J. Neuroimmunol., 77 128-133.
85. Brokstad K.A., Page M., Nyland H. (1994) Acta Neurol. Scand., 89 (6), 407-411.
86. Fesenmeier J.T., Whitaker J.N., Herman P.K. (1991) J. Neuroimmunol., 34 (1), 77-80.
87. Lamers K.J., van Engelen B.G., Gabreels F.J. (1995) Acta. Neurol. Scand., 92 (3), 247-251.
88. Lamers K.J., de Reus H.P., Jongen P.J. (1998) Mult. Scler., 4 (3), 124-126.
89. Longatti P.L., Guida F., Agostini S. (1994) Childs Nerv. Syst., 10 (2), 96-98.
90. Maatta J.A., Coffey E.T., Hermonen J.A. et al. (1997) Biochem. Biophys. Res. Commun., 238 (2), 498-502.
91. Massaro A.R., Michetti F., Laudisio A. (1985) Ital. J. Neurol. Sci., 6 (1), 53-56.
92. Melse J., Noppe M., Crols R. (1983) Acta Neurol. Belg., 83 (1), 17-22.
93. Soderstrom M., Link H., Xu Z. (1993) Neurology, 43 (6), 1215-1222.
94. Thompson A.J., Brazil J., Feighery C. (1985) Acta Neurol. Scand., 72 (6), 577-583.
95. Wood D.D., Bilbao J.M., O"Connors P. (1996) Ann Neurol., 40 (1), 18-24.
96. Warren K., Catz I. Johnson E. (1994) Ann Neurol., 35 (3), 280-289.
97. Yamazaki Y., Yada K., Morii S. et al (1995) Surg. Neurol., 43 (3), 267-270.
98. Barkhof F., Frequin S.T., Hommes O.R. (1992) Neurology, 42 (1), 63-67.
99. Warren K.G., Catz I. (1993) J. Neurol Sci, 115 (2), 169-176.
100. Sellebjerg F., Christiansen M., Nielsen P.M. (1998) Mult. Scler., 4 (6), 475-479.
101. Garcia-Alix A., Cabanas F., Pellicer A. (1994) Pediatrics, 93 (2), 234-240.
102. van Engelen B.G., Lamers K.J., Gabreels F.J. (1992) Clin. Chem., 38 (6), 813-816.
103. Del Bigio M.R., Kanfer J.N., Zhang Y.W. (1997) J. Neuropathol. Exp. Neurol., 56 (9), 1053-1066.
104. Matias-Guiu J., Martinez-Vazquez J., Ruibal A. (1986) Acta Neurol. Scand., 73 (5), 461-465.
105. Seeldrayers P.A., Hoyle N.R., Thomas D.G. (1984) J. Neurooncol., 2 (2), 141-145.
106. Nakagawa H., Yamada M., Kanayama T. (1994) Neurosurgery, 34 (5), 825-833.
107. Noseworthy T.W., Anderson B.J., Noseworthy A.F. (1985) Crit. Care Med., 13 (9), 743-746.
108. Sellebjerg F., Christiansen M., Garred P. (1998) Mult Scler, 4 (3), 127-131.
109. Кучинскене Д.И. (1992), Клиническое значение определения антител к основному белку миелина у больных рассеянным склерозом, ретробульбарным невритом и здоровых родственников., Автореф. дисс… канд. мед. наук.
110. Sellebjerg F., Frederiksen J.L., Olsson T. (1994) Scand. J. Immunol., 39 (6), 575-580.
111. Бойко А.Н., Фаворова О.О. (1995) Мол. биол., 29, № 4, 727-749.
112. Гусев Е.И., Демина Т.Л., Бойко А.Н. (1997) Рассеянный склероз., c. 463.
113. Warren K.G., Catz I. (1993) J. Neuroimmunol., 43 (1-2), 87-96.
114. Warren K.G., Catz I. (1994) J. Neurol Sci, 121 (1), 66-73.
115. Warren K.G., Catz I. (1995) J. Neurol Sci, 133 (1-2), 85-94.
116. Warren K.G., Catz I. (1999) Eur. Neurol., 42 (2), 95-104.

Будучи детьми, мы часто слышали от родителей и учителей пословицы «повторение - мать учения», «дело мастера боится» и т.д. Однако почему, с научной точки зрения, постоянное обучение и практика благоприятно влияют на состояние мозга? Немалую роль в этом играет особое вещество - миелин, которое формирует оболочку аксонов нервных клеток..

Мозг взрослого человека не прекращает развиваться

Когда мы обучаемся новому навыку, будь то программирование, игра в шахматы, катание на роликах или танцы, мы, сами того не осознавая, меняем наш мозг.

Научные исследования показали, что мозг невероятно пластичен, то есть он не формируется окончательно в 25 лет и не остается неизменным до конца жизни. В то время как определенные вещи (например, язык) детям даются намного легче, чем взрослым, существует масса доказательств того, что нейронная сеть мозга взрослого человека также может трансформироваться.

Но как это происходит? Чтобы выполнить определенное задание, нам необходимо активировать определенные участки мозга. Человеческий мозг координирует сложный комплекс реакций, включающих моторную функцию, обработку визуальной и звуковой информации, речь и прочее. Поначалу мы можем сбиваться, забывать некоторые вещи и слова, однако практика помогает нам все лучше справляться с задачей, чувствуя себя при этом более естественно и комфортно.

Постоянное обучение помогает мозгу оптимизировать выполнение комплекса скоординированных действий благодаря процессу миелинизации - образованию слоя миелина вокруг аксонов нервных волокон.

Роль миелина в скорости передачи нервных импульсов

Нейроны - основные строительные кирпичики мозга. Нейрон состоит из дендритов, получающих сигналы от других нейронов, клеточного тела, которое обрабатывает эти сигналы, и аксона - длинного «кабеля», который соединяется и взаимодействует с дендритами других нейронов. Когда различные части мозга взаимодействуют и координируют между собой свою активность, они отправляют нервные импульсы - электрические заряды, которые проходят по аксону нейрона и передаются в следующий нейрон цепи.

Когда нейрон «загорается», запускается так называемый эффект домино: данный процесс затрагивает количество нейронов, необходимых для передачи сигнала в конечную точку. Все это происходит невероятно быстро, что позволяет нам молниеносно реагировать на то или иное событие.

Иногда мы называем наш мозг серым веществом, потому что такой цвет ему придают клеточные тела нейронов, однако в нем, как известно, есть и белое вещество, которое составляет примерно 50% мозга.

Так вот, белое вещество - это аксоны, покрытые миелиновой оболочкой, придающей им белый цвет. Миелин - состоящее преимущественно из жиров (на 75%) и белков вещество, которое покрывает аксоны нервных клеток. Ученые выяснили, что миелинизация увеличивает скорость передачи и силу нервных импульсов, «заставляя» электрический заряд проскакивать через миелиновую оболочку к следующему открытому участку аксона.

Миелинизация увеличивает скорость передачи и силу нервных импульсов, «заставляя» электрический заряд проскакивать через миелиновую оболочку к следующему открытому участку аксона.

Иными словами, миелин позволяет электрическим сигналам «телепортироваться», вместо прямого следования по аксону, что обеспечивает сверхбыструю передачу нервных импульсов.

Практика, нервная активность и синтез миелина

Мы выяснили, что миелиновая оболочка - важная составляющая структура мозга, которая обеспечивает более быструю передачу нервных импульсов. Но можно ли как-нибудь «нарастить» миелин вокруг аксонов?

Важно понимать, что процесс миелинизации протекает естественным путем, преимущественно в детстве. Дети - «генераторы миелина», которые впитывают информацию об окружающем мире, словно губки. С возрастом эта способность снижается, однако не исчезает полностью, то есть у взрослых процесс миелинизации также протекает, только медленнее, да и усилий для «наращивания» миелина требуется больше.

Дети - «генераторы миелина», которые впитывают информацию об окружающем мире, словно губки.

Ученые полагают, что два типа глиальных клеток в мозге играют роль в создании нового миелина. Первый тип - астроциты, которые мониторят активность аксонов нервных клеток. Большое количество повторных сигналов от определенного аксона побуждает астроцит к выбросу химических веществ, которые стимулируют второй тип клеток - олигодендроциты - к выработке миелина, обволакивающего аксон.

Потому постоянная практика , будь то написание статей для блога, изучение иностранного языка, оригами, вязание и любые другие осваиваемые навыки, помогает создать новые паттерны передачи электрических сигналов между нейронами. Со временем это запускает процесс миелинизации соответствующих аксонов и увеличивает силу и скорость передачи сигналов.

Почему миелин помогает нервным клеткам работать лучше

Каким же образом миелин улучшает работу мозга? Наверняка можно сказать, что миелин увеличивает силу и скорость передачи нервных импульсов, что помогает нам в обучении.

Одним из доказательств этого являются снимки головного мозга профессиональных музыкантов. Было проведено большое количество исследований, посвященным различиям между мозгом музыкантов и обычных людей. В одном из них использовалась технология диффузионной МРТ, которая позволяет получить информацию о тканях и волокнах сканируемого участка мозга неинвазивным путем.

Исследователи пришли к выводу, что определенное количество практических занятий в детстве и юности у пианистов ассоциировалось с повышенной плотностью белого вещества в участках мозга, отвечающих за моторные навыки, обработку визуальной и слуховой информации, по сравнению с обычными людьми. При этом также наблюдалась прямая взаимосвязь между количеством часов практики и плотностью белого вещества/миелина.

Постоянное обучение новому - лучший способ стимуляции синтеза миелина.

Еще одним аргументом в пользу пословицы «учиться никогда не поздно» является то, что происходит при отсутствии деятельности, способствующей формированию миелина. Демиелинизация - известный фактор, играющий роль в развитии рассеянного склероза и других нейродегенеративных заболеваний. Потому миелин - важное вещество для поддержания функций мозга и, соответственно, тела.